11. Collecting... gauge marks!

Panagiotis Venetsianos
October 2001

Abstract: There exitsts a huge number of gauge points on slide rules. This article describes many of them.
Key words: gauge points.

Foreword

Some two or three years ago, while I was studying my recently purchased Albert Nestler $\mathrm{N}^{\circ} 40$, I realised I knew very little on the numerous gauge marks one can find on slide rules. This prompted me to do the following:

1. examine all my slide rules and make a list of their gauge marks;
2. scrutinise all the instruction leaflets and manuals I could lay hands on;
3. sort out the gathered information;
4. write a compendium, explaining and documenting all gauge marks I would be able to find.
I naively thought this latest would be accomplished very soon... I have to admit I was wrong. After years of collecting information, a lot of the marks are still a mystery but somehow, it's more fun!

Definition

I had, paradoxically, already collected a lot of information before I asked myself the important question: "what are the criteria that should be used to decide whether a mark is to be considered as a gauge or not". I came up with following definition:
"A gauge mark is either a supplementary stroke added to the normal graduation, or a normal stroke highlighted by a symbol or any other mean'.

This definition implies that even the stroke " 1 " can be considered as a gauge mark if there is something particular highlighting it.

Debut

The first users of slide rules must have "instinctively" marked the constants they frequently needed. I believe that this incited very soon the makers to include the scribing of the marks during the manufacturing process, maybe at the request of their customers.

The earliest gauge marks I have spotted are the WG, AG and MB marks on an instrument made by Everard, in the end of the 17th century [1].

Usefulness

If it is true that gauge marks facilitate calculations, they are not indispensable. When, for instance, π is not present on a scale, one can easily adopt the value $\frac{22}{7}$ or simply extrapolate its position between 3.1 and 3.15. Besides, when one has to perform many calculations involving the same constant, he can simply register its position with a pencil and erase it when he has finished.
Some slide rule manufacturers made a vast use of gauge points whereas others seemingly hated them. Burns Snodgrass, manufacturer or the Unique series, belongs to this latest group: "The inclusion of many gauge points in a slide rule is to be deprecated. The only one we think deserves its place is π and possibly $\frac{\pi}{4}$ "[2].

Accuracy

The mark's positioning on the scales depends not only on the quality of the manufacturing but also on other factors such as for instance:

- the precision adopted to calculate the value;
- the alloy taken into account, in the case of specific weights;
- the standards taken into account;
- etc...

Consequently, points bearing the same symbol can have the same use but different values.

Reciprocal value

In a chain of calculations, dividing by a reciprocal value of a factor - instead of multiplying by its integer value - can save "one" movement of the slide. Many gauge points use that trick and are in fact reciprocal values of more common constants (specific weights for instance).

Special sets of marks

Depending on their purpose, some gauge points can be assembled into sets:

- commercial sets: conversions of units, conversions of currencies, special quantities such as 12 or 144 etc...;
- electrical sets: resistivities, power conversions, weight of wires etc...;
- angular sets: facilitating conversions of units and various trigonometric calculations;
- chemical sets;
- etc...

Coupled marks

Gauge marks are sometimes scribed at apparently illogical values. Those points need in fact to be used in combination with another similar point in order to form a table. I call them "coupled gauge marks"; they are often used for unit conversions. The
gauges indicated at the back of the rules are very often coupled marks as well.

Registering the marks

Registering the gauge marks with strokes identical to the rest of the scale strokes is of course not very practical. Hereafter a nonexhaustive list of the methods used to highlight the gauges:

- longer stroke;
- floating stroke, i.e. not touching the scale line;
- indication of the value;
- symbol or abbreviation;
- supplementary mark such as "V" or "X";
- thick dot;
- small circle or triangle;
- arrow,
- brass centre pin;
- etc...

Compendium

The compendium I am writing (in French, my mother tongue) comprises:

- an introduction, with the same general information which constitutes the body of this article;
- an index of all abbreviations and symbols with cross-references to their respective gauge marks;
- a list of the gauge marks.

Each article of the list is made up in the same way:

- up to four digits of the value, without decimal point, the last digit being rounded off;
- the decimal value and the formula from which it derives;
- all the different abbreviations and symbols found for that gauge point;
- a section with general comments (optional);
- extracts from manuals mention-ning the gauge point (optional);
- a computation using the gauge point (optional);

Example:

1745
Valeur décimale: 0,017 $4532 \ldots$...rd

$$
\begin{aligned}
& =\frac{\pi}{180} \text { radian } \\
& =1^{\circ}
\end{aligned}
$$

Désignations: $\quad \rho$

$$
\rho^{\circ}
$$

V

Repère angulaire permettant de convertir des degrés en radians.

Voir aussi article 573.

Traces bibliographiques.

Les angles n'excédant pas 5,5

```
«...se confondent
pratiquement, lorsqu'ils sont
exprimés en radians, avec
leurs sinus et leurs
tangentes: On peut écrire sin
\alpha = tg \alpha = \alpha avec une erreur
qui est négligeable
relativement au degré de
précision propre à la règle à
calcul.
Par conséquent, si l'on
désire avoir le sinus ou la
tangente d'un tel "petit
angle" il suffit de convertir
celui-ci en radians, la
valeur ainsi obtenue étant
non seulement celle de
l'angle mais aussi celle de
son sinus ou celle de sa
tangente. On se rappellera à
cet effet que pour passer des
degrés aux radians... ...on
applique à la valeur en
degrés le facteur de
conversion \pi/180 = 0,1745.
(Ce facteur important est
repéré sur la règle par le
signe "\rho").» [3]
```

- name and model of a rule bearing that point.

Exemple de calcul.

```
<On veut avoir sin 3' (ou, ce
qui revient au même à notre
degré de précision, tg 3}\mp@subsup{}{}{\circ}\mathrm{ ).
On a: 3 degrés = = ,14\ldots\times3
radians ou, plus rapidement,
= \rho x 3 radians; effectuant
cette opération sur la règle
on trouve 0,0524. Donc on
peut écrire 3 degrés = 0,0524
radian; et donc aussi sin 3}\mp@subsup{3}{}{\circ
= tg 3' = 0,0524»[3]
```

Exemple de règle portant ce repère.
Marque: UTO
Modèle: 601
Position: échelles de base de la règle et de la réglette

Désignation: $\quad \rho$
[1] Gerard L'E Turner,
Scientific Instruments 1500-1900 An Intoduction, Philip Wilson Publischers, 1998.

ISBN 0856674915.
[2] Burns Snodgrass, Teach yourself the slide rule,
The English Universities Press LTD, London EC4, 1955, Impression 1967.
[3] J. Carly, Manuel pour l'emploi de la règle à calcul,
A.W.Faber-Castell, Stein bei Nürnberg,

264, 1/700fr.

Simplified list

Of course the list hereafter is not exhaustive, it simply gives all the marks I have been able to find on my slide rules (a little more than 400 "different" models, all from the 20th century). A small minority of the marks was found in manuals, books and instruction leaflets.
I have also examined almost all the pictures from the excellent CD published by Herman van Herwijnen and found more than 300 marks unknown on my rules. They are not
listed hereafter, as I have not had the time to go through them yet.
One more remark: the precision up to four digits is most of the time not necessary; it simply allows me to differentiate the gauges more easily.

Mark Meaning

1 coupled mark for many different conversions
$1 \quad 100.01=$ mass of the CrO_{3} molecule
$1 \quad 100.09$ mass of the CaCO_{3} molecule
$101 \quad 1.01=1+1 \%$
$101 \quad 1.01$ reminds graduations are 0.01 apart
$101 \quad \log _{e} 1.01005=0.01$
$1013 \quad 1.0125=1+1.25 \%$
$1015 \quad 1.015=1+1.5 \%$
$10161016.04 \mathrm{~kg}=1$ long ton
$1018 \quad 1.0175=1+1.75 \%$
1019 coupled mark for yard/metre conversions
$1019 \quad 101.94=$ mass of the $\mathrm{Al}_{2} \mathrm{O}_{3}$ molecule
$102 \quad 1.02=1+2 \%$
$1023 \quad 1.0225=1+2.25 \%$
$1025 \quad 1.025=1+2.5 \%$
$1028 \quad 1.0275=1+2.75 \%$
$103 \quad 1.03=1+3 \%$
$1033 \quad 1.0325=1+3.25 \%$
$1035 \quad 1.035=1+3.5 \%$
$1038 \quad 1.0375=1+3.75 \%$
$104 \quad 1.04=1+4 \%$
$104.2104 .2=$ mass of the Cr_{2} molecule
$1043 \quad 1.0425=1+4.25 \%$
$1045 \quad 1.045=1+4.5 \%$
$1048 \quad 1.0475=1+4.75 \%$
$105 \quad 1.05=1+5 \%$
$105 \quad 105$ \%
$10531.0525=1+5.25 \%$
$10551.055=1+5.5 \%$
1055 105.5\%
$1058 \quad 1.0575=1+5.75 \%$
$106 \quad 1.06=1+6 \%$
$10631.0625=1+6.25 \%$
$1065 \quad 1.065=1+6.5 \%$
1066 coupled mark for Imperial gallon conversions
$1068 \quad 1.0675=1+6.75 \%$
$107 \quad 1.07=1+7 \%$
$10731.0725=1+7.25 \%$
$10751.075=1+7.5 \%$
$1078 \quad 1.0775=1+7.75 \%$
$1079107.88=$ mass of the Ag atom
$108 \quad 1.08=1+8 \%$
$1083 \quad 1.0825=1+8.25 \%$
$1085 \quad 1.085=1+8.5 \%$
$1088 \quad 1.0875=1+8.75 \%$
$109 \quad 1.09=1+9 \%$
1092 ???
$10931.0925=1+9.25 \%$
$10941.0936=\frac{1}{0,9144}$
$(0.9144$ metre $=1$ yard $)$
$1094 \quad 0.109375=\frac{7}{64}$
$10951.095=1+9.5 \%$
$1098 \quad 1.0975=1+9.75 \%$
$1099109.86=$ mass of the Mn_{2} molecule
$11 \quad 1.1=1+10 \%$
$11 \quad 110 \%$
110 minutes $=1$ hour 50 minutes
$1105 \log _{e} 1.10517 \ldots=0.1$
$1107 \quad 1.1073=\log _{8} 10$
111 111\%
1112 ???
1117 111.7 = mass of the Fe_{2} molecule

1117	$2.738^{1,117}=3,08$	125	125\%
1124	$0.11236=\frac{1}{8,9}$		$0.125=1 / 8$
		1269	$126.92=$ mass of the J atom
	$\left(8.9 \mathrm{~kg} / \mathrm{dm}^{3}=\right.$ specific weight of copper)	1271	$127.14=$ mass of the Cu_{2} molecule
		1273	$1.273=4 / \pi$
1128	$1.1284=\sqrt{\frac{4}{\pi}}$	1275	???
1133	$1132.67 \mathrm{~m}^{3}=1$ ocean ton	1279	$1.279=\sqrt{\frac{40}{\pi-7.78}}$
1137	1.1365 litres $=1$ British quart		$\left(7.78 \mathrm{~kg} / \mathrm{dm}^{3}=\right.$ specific weight of
1145	$0.00011447=\frac{1}{78 \times 112}$		steel)
	78×112 $(78 \mathrm{~cm} \times 112 \mathrm{~cm}=$ paper size $)$	128	coupled mark for US gallon conversions
1146	???	13	130\%
115	115\%		130 minutes $=2$ hours 10 minutes
115	coupled mark to find the golden number	1333	$1.333=4 / 3$
		1339	133.9 mass of the AgCN molecule
$\begin{aligned} & 116 \\ & 1176 \end{aligned}$	$116.01=$ mass of the CrO_{4} molecule	134	$1.34=$
	117.56 Austrian Crown $=100$		$1.34=\overline{0.746}$
	Deutsch Mark		(0.746 kilowatt $=1$ British
1182	$\sin 1.18189^{\circ}=0.0206265$		horsepower)
	$(206264.8$ seconds $=1$ radian $)$	135	135\%
1187	118.7 = mass of the Sn atom	1355	$\sqrt{\frac{4}{\pi-0.693}}$? ? ?
1196	$1.196=\frac{1}{(0.9144)^{2}}$		$\sqrt{\pi \cdot 0.693}$
	$(0.9144 \text { metre }=1 \text { yard })$	136	$1.36=\frac{1}{0.73575}$
1196	$1.196=\sqrt{\frac{40}{\pi \cdot 8.9}}$		$(0.73575$ kilowatt $=1$ metric horsepower)
12	$\left(8.9 \mathrm{~kg} / \mathrm{dm}^{3}=\right.$ specific weight of copper)	1361	$136.14=$ mass of the CaSO_{4} molecule
	one dozen	1374	$137.36=$ mass of the Ba atom
	120\%	1382	$1.382=\sqrt{\frac{6}{\pi}}$
	120 minutes $=2$ hours		
1201	$12.01=$ mass of the C atom	1386	$138.55=$ mass of the KClO_{4} molecule
1215	???	14	140\%
1217	121.65 mass of the CuCNS molecule		140 minutes $=2$ hours 20 minutes
122	coupled mark for km conversions	1401	14.01 = mass of the N atom
123	???	1406	$0.140625=9 / 64$
1235	123.46 French Franc $=100$ Deutsch Mark	1413	???

$1414 \quad 1.414=\sqrt{2}$
$142 \quad 141.96=$ mass of the $\mathrm{P}_{2} \mathrm{O}_{5}$ molecule $142.05=$ mass of the $\mathrm{Na}_{2} \mathrm{SO}_{4}$ molecule
$1429 \quad 0.000142857 \ldots=\frac{1}{70 \times 100}$
($70 \mathrm{~cm} \times 100 \mathrm{~cm}=$ paper size)
143 coupled mark for feet conversions
$1433 \quad 143.34=$ mass of the AgCl molecule
1441 gross $=12$ dozens
$145 \quad 145 \%$
$1476 \quad 147.64=$ mass of the SrCO_{3} molecule
$14810.1481=\sqrt{\frac{0.01722 \times 4}{\pi}}$ (resistance in a copper wire, whose resistivity at $15^{\circ} \mathrm{C}$ is $0.01722 \Omega \mathrm{~mm}^{2} / \mathrm{m}$)
$14930.1493=\sqrt{\frac{0.0175 \times 4}{\pi}}$ resistance in a copper wire whose resistivity at $20^{\circ} \mathrm{C}$ is $0.0175 \Omega \mathrm{~mm}^{2} / \mathrm{m}$
$14950.1495=\sqrt{\frac{0.01755 \times 4}{\pi}}$ resistance in a copper wire whose resistivity at $20^{\circ} \mathrm{C}$ is $0.01755 \Omega \mathrm{~mm}^{2} / \mathrm{m}$
$1498 \quad 149.82=$ mass of the As_{2} molecule
$15 \quad 150 \%$
150 minutes $=2$ hours 30 minutes
$1507 \quad 150.7=$ mass of the $\mathrm{Sn} \mathrm{O}_{2}$ molecule
$1508 \quad 1.508=\sqrt{\frac{4}{\pi \cdot 0.56}}$
$\left(0.56 \mathrm{~kg} / \mathrm{dm}^{3}=\right.$ specific weight of fir wood)
152 $\quad 152.02=$ mass of the $\mathrm{Cr}_{2} \mathrm{O}_{3}$ molecule
1525 ???
153 coupled mark for statute mile conversions
$1538 \quad 0.000153846 \ldots=\frac{1}{65 \times 100}$
($65 \mathrm{~cm} \times 100 \mathrm{~cm}=$ paper size)
155 155\%
$155 \quad 0.155=\frac{1}{2,54^{2}}$
($2.54 \mathrm{~cm}=1 \mathrm{inch}$)
$1563 \quad 0.015625=1 / 64$
$0.15625=5 / 32$
$1571 \quad 1.571=\pi / 2$
0.01571 radian $=1$ decimal degree
$=\pi / 200$ radian
$1590.159 \mathrm{~m}^{3}=1$ petrol barrel
$1597 \quad 159.7=$ mass of the $\mathrm{Fe}_{2} \mathrm{O}_{3}$ molecule
$16 \quad 16=$ mass of the O atom
$16 \quad 160 \%$
16091.609 kilometre $=1$ statute mile
$1639 \quad 16.387 \mathrm{~cm}^{3}=1$ cubic inch
Pud ???
$1648 \quad 164.8=$ mass of the Mn_{3} molecule
165 165\%
165 coupled mark for kilogram conversions
$1667 \quad 100 \%+2 / 3$
m / s ? ??
$17 \quad 170 \%$
1703 17.03 $=$ mass of the NH_{3} molecule
$1719 \quad 0.171875=11 / 64$
$1732 \quad 1.732=\sqrt{3}$
$17360.0001736=\frac{1}{64 \times 90}$ ($64 \mathrm{~cm} \times 90 \mathrm{~cm}=$ paper size)
$17380.01738 \Omega \mathrm{~mm}^{2} / \mathrm{m}=$ resistivity of copper at $15^{\circ} \mathrm{C}$
$1743 \quad 174.25=$ mass of the $\mathrm{K}_{2} \mathrm{SO}_{4}$ molecule
$17450.0174532 r d=\frac{\pi}{180}$ radian $=1^{\circ}$

175 175\%
$1750.0175 \Omega \mathrm{~mm}^{2} / \mathrm{m}=$ resistivity of copper at $20^{\circ} \mathrm{C}$

176 coupled mark for nautical mile conversions

1762 ???
$1782 \quad 0.000178189=\frac{1}{61 \times 92}$
(61 cm x $92 \mathrm{~cm}=$ paper size)
$17850.01785 \Omega \mathrm{~mm}^{2} / m=$ resistivity of copper at $20^{\circ} \mathrm{C}$

18 180\%
180 minutes $=3$ hours
$180418.04=$ mass of the NH_{4} molecule
18291.829 metres $=1$ fathom
$18330.000183284=\frac{1}{62 \times 88}$ ($62 \mathrm{~cm} \times 88 \mathrm{~cm}=$ paper size)
$1837183.69=$ mass of the SrSO_{4} molecule
185 185\%
$18521.852 \mathrm{~km}=1$ international nautical mile

1853 1.853 km = 1 British nautical mile ???
186 coupled mark to find the golden number
$1875 \quad 0.1875=3 / 16$
$1878187.8=$ mass of the AgBr molecule
$19 \quad 19=$ mass of the F atom
19 190\%
1905 coupled mark for US gallon conversions

1906 ???
$191 \quad 1.90985=\frac{6}{\pi}$
$19220.192156=\sqrt{\frac{4 \cdot 0.029}{\pi}}$
(0.029 $\Omega \mathrm{mm}^{2} / \mathrm{m}=$ resistivity of aluminium at $20^{\circ} \mathrm{C}$)
19519.5° ???
195 195\%
1952195.23 mass of the Pt atom
$19680.019684=\frac{1}{50.8023 \ldots}$
1 British hundredweight
$=50.8023 \mathrm{~kg}$
197 sinus $1.97^{\circ}=0.034377$
(3437.7 minutes $=1$ radian)
$1974 \quad 197.37$ = mass of the BaCO_{3} molecule

2 20\%
2005 currency conversions to Austrian Shilling
$2006200.61=$ mass of the Hg atom
202 2.02 reminds graduations are 0.02 apart
2063 206264.8" $=\frac{180 \times 60 \times 60 "}{\pi}$
$=1$ radian
2072 207.21 = mass of the Pb atom
209 209 = mass of the Bi molecule
21210 minutes $=3$ hours 30 minutes
$212 \quad 212^{\circ} \mathrm{F}=100^{\circ} \mathrm{C}$
$2158215.76=$ mass of the Ag_{2} molecule
$218 \quad 2.17965=\sqrt{\frac{40}{\pi \cdot 2.68}}$
$\left(2.68 \mathrm{~kg} / \mathrm{dm}^{3}=\right.$ specific weight of aluminium)
$2188 \quad 0.21875=7 / 32$
$220,219975 \ldots=\frac{1}{4,54596}$ (1 Imperial gallon $=4.546$ litres $)$
22220 Volt
$2203 \log _{e} 22026.4 \ldots=10$
$22052.20462=\frac{1}{0,453592 \ldots}$
1 Imperial pound $=0.453592 \mathrm{~kg}$???

2215 coupled mark for US fluid ounce conversions
$2217 \quad 0.221690=\frac{1}{4.5108}$ 1 cicero $=4.5108 \mathrm{~mm}$
2226 222.6 = mass of the $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ molecule

2232 223.26 = mass of the PbO molecule
224122.416 litres/mole
$225 \quad 2.25=2 \frac{1}{4}$
$2288 \quad 228.79=$ mass of the $\mathrm{Mn}_{3} \mathrm{O}_{4}$ molecule
$23 \quad 23=$ mass of the Na atom
$23032.30258=\log _{\mathrm{e}} 10$
2327 232.67 = mass of the HgS molecule
$2334233.42=$ mass of the BaSO_{4} molecule
$2348234.8=$ mass of the AgI molecule
$236236.07=$ mass of the HgCl molecule
2382 23.821 \$ = 100 Deutsch Mark
2393 239.27 = mass of the PbS molecule
2424 hours
240 minutes $=4$ hours
241 coupled mark for inch and ounce conversions
243 24.32 = mass of the Mg atom
$2435243.52=$ mass of the Sb_{2} molecule
$246 \quad 246=$ mass of the $\mathrm{As}_{2} \mathrm{~S}_{3}$ molecule
$2478247.82=$ mass of the $\mathrm{Ag}_{2} \mathrm{~S}$ molecule
25 25\%
$21 / 2$
2534 253.37 = mass of the BaCrO_{4} molecule
$2538253.84=$ mass of the I_{2} molecule
$254 \quad 25.4 \mathrm{~mm}=1$ inch
2602 26.02 = mass of the CN molecule
$2605260.46=$ mass of the BiOCl molecule
$2642 \quad 0.2642=\frac{1}{3.785}(1$ US gallon $=$ 3.785 litres)

266 ???
268 26.8 Ampere hour/mole
$=4.45 \times 6.022$
2697 26.97 = mass of the Al atom
$27 \quad 2.7 \mathrm{~kg} / \mathrm{dm}^{3}=$ specific weight of aluminium
27 270 minutes $=4.5$ hours
$2718 \quad 2.71828=$ e
275
278
$2.75=2 \frac{3}{4}$
currency conversions to Netherlands guilder
279 currency conversions to Deutsch Mark

2805 ???
2806 28.06 = mass of the Si atom
2819281.912 litres $=1$ US quarter

2825 ???
2832 28.3168 litres $=1$ cubic foot 2831.68 litres $=1$ register ton

2835 28.35 grams $=1$ ounce avoirdupois
2835 coupled mark for US gallon conversions
$2838283.82=$ mass of the $\mathrm{Mn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ molecule

2847 sinus verse $2.847^{\circ}=0.001$ $\left(2.847^{\circ}=\right.$ decimal degrees $)$
$287 \quad 28.7=\frac{1}{2 \times 0.01742}$
($0.01742 \Omega \mathrm{~mm}^{2} / \mathrm{m}=$ resistivity of copper)
$29 \quad 0.029 \Omega \mathrm{~mm}^{2} / \mathrm{m}=$ resistivity of aluminium
29 coupled mark for feet conversions
2908290.8 litre $=1$ quarter

2909 290.94 litre $=1$ British quarter
33%

300 minutes $=5$ hours
$300130.01=$ mass of the NO molecule
$301 \quad 0.30103=\log _{10} 2$
$3033303.27=$ mass of the PbSO_{4} molecule
$304303.98=$ mass of the BiPO_{4} molecule
3048 0.3048 metre $=1$ foot
$3049 \quad 3.049=\frac{4}{\pi} \cdot 2.395$
(2.395 $\cdot 10^{-5} \Omega$ inch $^{2} /$ yard $=$ resistivity of copper)
305 ???
$3098 \quad 30.98=$ mass of the P atom
$3101 \quad 310.12=$ mass of the $\mathrm{As}_{2} \mathrm{~S}_{5}$ molecule
$3105310.46=$ mass of the $\mathrm{Mg}_{2} \mathrm{As}_{2} \mathrm{O}_{7}$ molecule
$3125 \quad 0.03125=\frac{1}{32}$
$0.3125=\frac{5}{16}$
$3142 \quad 3.14159=\pi$
$3162 \quad 3.162=\sqrt{10}$
$3183 \quad 0.318309=\frac{1}{\pi}$
$3232^{\circ} \mathrm{F}=0^{\circ} \mathrm{C}$
32 currency conversions to $£$
$320632.06=$ mass of the S atom
$321932.185 \mathrm{feet} / \mathrm{sec}^{2}=\mathrm{g}=$ gravitational acceleration
$3232323.22=$ mass of the PbCrO_{4} molecule
$325 \quad 3.25=3 \frac{1}{4}$
3281
$3.28084=\frac{1}{0.3048}$
332 ???
$33330.333333=\frac{1}{3}$
$334 \quad 0.334197=\sqrt{\frac{4}{\pi \cdot 11.4}}$
$\left(11.4 \mathrm{~kg} / \mathrm{dm}^{3}=\right.$ specific weight of lead)
335 currency conversions to Swiss Franc
$3397 \quad 339.7=$ mass of the $\mathrm{Sb}_{2} \mathrm{~S}_{3}$ molecule
$3408 \quad 34.076=$ mass of the $\mathrm{H}_{2} \mathrm{~S}$ molecule
341 coupled mark for Imperial gallon conversions

3438 3437.74' $=\frac{180 \times 60^{\prime}}{\pi}=1$ radian
35 35\%
$35 \quad 35 \mathrm{~m} / \Omega \mathrm{mm}^{2}=$ conductibility of aluminium
$35240.03524 m^{3}=1$ US dry bushel
35270.03527 ounce avoirdupois
$=1 \mathrm{gram}$
353 ???
$354635.46=$ mass of the Cl atom
$3568 \quad 3.568=\sqrt{\frac{40}{\pi}}$
???
357 ???
$35920.3592^{\circ} \mathrm{K} / \mathrm{mm} \mathrm{Hg}=\frac{273}{760}$
36360 minutes $=6$ hours
$3605360.54=$ mass of the PdI_{2} molecule
3635 36.35 litres $=1$ British bushel (!!! see 3637)
3635 coupled mark for pound avoirdupois conversions
3637 36.37 = 1 British bushel
$364736.468=$ mass of the HCl molecule
$36790.3679=\frac{1}{2.71828 \ldots}=\frac{1}{e}$
$375 \quad 0.375=\frac{3}{8}$
376 ???
$3784 \quad 0.3784=\sqrt{\frac{4}{\pi \cdot 8.89}}$
$\left(8.89 \mathrm{~kg} / \mathrm{dm}^{3}=\right.$ specific weight of copper)
3785 3.785 litres $=1$ US gallon
$3789 \quad 0.3789=\sqrt{\frac{4}{\pi \cdot 8.87}}$
$\left(8.87 \mathrm{~kg} / \mathrm{dm}^{3}=\right.$ specific weight of copper)

38380 Volt
3812 ???
3835 ???
385 currency conversions to Belgian Franc

386 coupled mark for pound avoirdupois conversions
$388 \quad 0.388=\sqrt{\frac{4}{\pi-8.45}}$
$\left(8.45 \mathrm{~kg} / \mathrm{dm}^{3}=\right.$ specific weight of brass)
$391 \quad 39.1=$ mass of the K atom
39370.3937 inch $=1 \mathrm{~cm}$

395 currency conversions to Swedish Crown

4 40\%
4007 arc $4,00658^{\circ}=0,0699268 \ldots$
$=\operatorname{tg} 4^{\circ}$
$400840.08=$ mass of the Ca atom
4025 ???
4032 40.32 = mass of the MgO molecule
$4038 \quad 403.82=$ mass of the $\mathrm{Sb}_{2} \mathrm{~S}_{5}$ molecule
$40474046.85 \mathrm{~m}^{2}=1$ acre
405 4.05 reminds graduations are 0.05 apart
$405 \quad 0.405=\sqrt{\frac{4}{\pi \cdot 7.76}}$
$\left(7.76 \mathrm{~kg} / \mathrm{dm}^{3}=\right.$ specific weight of iron)

409 0.409 kg = 1 Russian Pound

414 ???
$418 \quad 418=$ mass of the Bi_{2} molecule
$4176 \quad 0.4176=\sqrt{\frac{4}{\pi \cdot 7.3}}$
$\left(7.3 \mathrm{~kg} / \mathrm{dm}^{3}=\right.$ specific weight of cast-iron)

42420 minutes $=7$ hours
425 currency conversions to French Franc
$4343 \quad 0.4343=\log _{10} \mathrm{e}$
436 coupled mark for conversions to metre
$4375 \quad 0.4375=7 / 16$
$4401 \quad 44.01=$ mass of the CO_{2} molecule
$4429 \quad 4.429=\sqrt{2 \mathrm{~g}}=\sqrt{2 \times 9.81}$
$4441 \quad 444.05=$ mass of the $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Pt} \mathrm{Cl}_{6}$ molecule
$4492 \quad 0.4492=\frac{273}{760} \times 1.2505$
$(0.0012505 \mathrm{~kg} / \mathrm{litre}=$ specific mass of nitrogen N)

45 45\%
45360.4536 kilogram $=1$ pound
45.36 kilogram = 1 US
hundredweight $=1$ cental
$454 \quad \log _{\mathrm{e}} 0,0000454=-10$
454 coupled mark for British gallon conversions
45464.546 litres $=1$ British gallon
$46 \quad 45.99=$ mass of the Na_{2} molecule
4629 46.29 Roubles $=100$ Deutsch Mark
465 coupled mark for kilowatt conversions
$466 \quad 466=$ mass of the $\mathrm{Bi}_{2} \mathrm{O}_{3}$ molecule
$479 \quad 47.9=$ mass of the Ti atom
4848 hours $=2$ days
480 minutes $=8$ hours
4845 coupled mark for litre conversions
$4862486.16=$ mass of the $\mathrm{K}_{2} \mathrm{PtCl}_{6}$ molecule
$486448.64=$ mass of the Mg_{2} molecule
$48964.896 £=100$ Deutsch Mark
49 currency conversions to Italian Lira
5 50\%
$5013 \operatorname{arc} 5,01273^{\circ}=0,0874886 \ldots$ $=\operatorname{tg} 5^{\circ}$
50850.80 kilograms $=1$ British hundredweight
$5142514.18=$ mass of the $\mathrm{Bi}_{2} \mathrm{~S}_{3}$ molecule
$52 \quad 52.01=$ mass of the Cr atom
536 53.6 Ampere hour/mole $=4.45 \times 6.022 \times 2$
$539453.94=$ mass of the Al_{2} molecule
$54 \quad 0.54=\frac{1}{1.852}$
$0.54=\frac{1}{1.853}$
(1852 metres $=1$ international nautical mile)
(1853 metres $=1$ British nautical mile)
54 currency conversions to Spanish Peseta
54540 minutes $=9$ hours
5475 ???
5493 54.93 = mass of the Mn atom
55 55\%
5535 ???
554 ???
$5585 \quad 55.85=$ mass of the Fe atom
$560856.08=$ mass of the CaO molecule
$5625 \quad 0.05625=\frac{360}{6400}$
57 currency conversions to Danish Crown
$5711 \operatorname{tg} 5.71059^{\circ}=0.1$
$57257.2 \mathrm{~m} / \Omega \mathrm{mm}^{2}=$ conductibility of copper
$573 \quad 57.2958^{\circ}=1$ radian $=\frac{180^{\circ}}{\pi}$
$573 \sin 0.572967^{\circ}=0.01$
$5739 \sin 5.73917^{\circ}=0.1$
$58 \quad 58 \mathrm{~m} / \Omega \mathrm{mm}^{2}=$ conductibility of copper
$584658.46=$ mass of the NaCl molecule
$586958.69=$ mass of the Ni atom
$589458.94=$ mass of the Co atom
5926 59.26 Dutch Guilder = 100 Deutsch Mark
$5989 \operatorname{arc} 5,98904^{\circ}=0,1045284 \ldots$
$=\sin 6^{\circ}$
6 60\%
60 minutes
60 seconds
$6 \quad 60.01=$ mass of the CO_{3} molecule
$60160.06=$ mass of the SiO_{2} molecule
$6022 \operatorname{arc} 6,022025^{\circ}=0,1051042 \ldots$
$=\operatorname{tg} 6^{\circ}$
611 ???
$62 \quad 0.62=\sqrt{\frac{0.302 \times 4}{\pi}}$
($0.302 \Omega \mathrm{~mm}^{2} / \mathrm{m}$ resistivity of nickel silver)
$62 \quad 61.99=$ mass of the $\mathrm{Na}_{2} \mathrm{O}$ molecule
$62.01=$ mass of the NO_{3} molecule
$62140.621371=\frac{1}{1.609344}$
(1.609344 kilometre $=1$ statute mile
$625 \quad 0.625=5 / 8$
$6283-6.283=2 \pi$
632 coupled mark for metric horsepower conversions
$6345 \operatorname{tg} 6.3451$ decimal degrees $=0.1$
$6357 \quad 63.57=$ mass of the Cu atom
6366636619.77 decimal seconds $=1$
radian $=\frac{200 \times 100 \times 100}{\pi}$
$6377 \sin 6.37685$ decimal degrees $=0.1$
$640664.06=$ mass of the SO_{2} molecule
$64526.4516 \mathrm{~cm}^{2}=1$ square inch
65 65\%
$653865.38=$ mass of the Zn atom
66 coupled mark for nautical mile conversions
$6667 \quad 0.6667=2 / 3$
$6854 \quad 0.6854=\sqrt{\frac{4}{\pi \cdot 2.71}}$
$\left(2.71 \mathrm{~kg} / \mathrm{dm}^{3}=\right.$ specific weight of ???)
$6870.6867=\sqrt{\frac{4}{\pi \cdot 2.7}}$
$\left(2.7 \mathrm{~kg} / \mathrm{dm}^{3}=\right.$ specific weight of aluminium)
$688 \quad 0.688=\sqrt{\frac{4}{\pi-2.69}}$
$\left(2.69 \mathrm{~kg} / \mathrm{dm}^{3}=\right.$ specific weight of aluminium)
$6964 \quad 69.64=$ mass of the $\mathrm{B}_{2} \mathrm{O}_{3}$ molecule
$7 \quad 70 \%$
70 minutes $=1$ hour 10 minutes
7075 ???
$709 \quad 70.93=$ mass of the MnO molecule
7110.711 metre $=1$ Russian archine

714 ???
$718571.85=$ mass of the FeO molecule
7350.735 kilowatt $=1$ metric horsepower $=75 \mathrm{kgm} \times 9.8 \mathrm{~m} / \mathrm{s}^{2}$
7360.73575 kilowatt $=1$ metric horsepower $=75 \mathrm{kgm} \times 9.81 \mathrm{~m} / \mathrm{s}^{2}$
$745674.56=$ mass of the KCl molecule
7460.746 kilowatt $=1$ British horsepower $=33000 \frac{\text { foot pound }}{\min } \mathrm{x}$
$9.81 \mathrm{~m} / \mathrm{s}^{2}=$
$33000 \frac{0.3048 \mathrm{~m} \times 0.4536 \mathrm{~kg}}{60 \mathrm{sec}} \times 9.81 \mathrm{~m} / \mathrm{s}^{2}$
$747 \quad 74.69=$ mass of the NiO molecule

749 coupled mark for litre conversions
$7491 \quad 74.91=$ mass of the As atom
75 75\%
755 coupled mark for statute mile conversions

759 ???
$760676.06=$ mass of the SiO_{3} molecule
7624 ???
$76460.7646 \mathrm{~m}^{3}=1$ cubic yard
77 currency conversions to \$
$780878.08=$ mass of the CaF_{2} molecule
$781978.19=$ mass of the K_{2} molecule
$7854 \quad 0.7854=\frac{\pi}{4}$
788 ???
$795679.56=$ mass of the CuO molecule
$7958 \quad 0.07958=\frac{1}{4 \pi}$
$799 \quad 79.9=$ mass of the TiO_{2} molecule $79.92=$ mass of the Br atom
8 80\%
80 minutes $=1$ hour 20 minutes
$800680.06=$ mass of the SO_{3} molecule
804 80.4 Ampere hour/mole $=4.45 \times 6.022 \times 3$
$813881.38=$ mass of the ZnO molecule
$83610.8361 \mathrm{~m}^{2}=1$ square yard
844 ??? (for kilowatt conversions)
$8475 \quad 0.008475=\frac{1}{118}$
(percentage calculations: 18\%)
85 85\%
85 coupled mark for $k g$ conversions
$869986.99=$ mass of the MnS molecule
87 ???
$875 \quad 0.875=7 / 8$
$876387.63=$ mass of the Sr atom

Help...

The triple question mark (???) in the list above indicates, either that I am not sure of the meaning of the gauge or that I could not find any meaning at all. I would greatly appreciate if any of the members could help me fill in the gaps and give me more information on following points (preferably with extracts from instruction manuals or leaflets, no matter the language):
$8772 \quad 0.008772=\frac{1}{114}$
(percentage calculations: 14\%)
8889 88.89 Swedish Crown $=100$ Deutsch Mark
$89 \quad 8.89 \mathrm{~kg} / \mathrm{dm}^{3}=$ specific weight of copper
$8950.895=\sqrt{\frac{4}{\pi-1.59}}$
$\left(1.59 \mathrm{~kg} / \mathrm{dm}^{3}=\right.$ specific weight of ???)
$9 \quad 9 \%$
90\%
90 minutes $=1.5$ hours
???
$9048 \log _{\mathrm{e}} 0.904837 \ldots=-0.1$
$9072907.184 \mathrm{~kg}=1$ short ton
91440.9144 metre $=1$ yard
$920692.06=$ mass of the SiO_{4} molecule
$929 \quad 929.0304 \mathrm{~cm}^{2}=1$ square foot
9318 coupled mark for yard conversions
9419 94.19 = mass of the $\mathrm{K}_{2} \mathrm{O}$ molecule
$9434 \quad 0.009434=\frac{1}{106}$
(percentage calculation: 6\%)
94640.946353 litre $=1$ US quart
$949894.98=$ mass of the PO_{4} molecule
959.5%
95\%

95 coupled mark for kilogram conversions

953 ???
96 ???
9606 96.06 = mass of the SO_{4} molecule
$974497.44=$ mass of the ZnS molecule
$980898.076=$ mass of the $\mathrm{H}_{2} \mathrm{SO}_{4}$ molecule
$981 \quad 9.81 \mathrm{~m} / \mathrm{s}^{2}=\mathrm{g}$
gravitational acceleration
$99 \log _{e} 0.990049 \ldots=-0.01$

1092 found on A.W.FABER "CASTELL" 1/22 DISPONENT für den
Kaufmann, indicated Desj.
1112 found on HONO 300 S.R.E. ELEKTRON $25 \mathrm{~N}^{\circ} 670$, indicated VE'.
1146 found on P.I.C. RULE SLIDE R.A. V.F. 0129 10". Gunner's mark. What is the theory behind it?
1215 found on A.W.FABER-CASTELL 111/48 System Dr. Winkel, indicated by an hexagon;
123 found on A.W.FABER "CASTELL" 1/22 DISPONENT für den Kaufmann, indicated Wd;
1275 found on A.W.FABER-CASTELL 111/48 System Dr. Winkel, indicated by a circle;
1355 found on TAVERNIER-GRAVET 13 bis REGLE BEGHIN, indicated \mathbf{c} ch. Calculates the weight of a cylinder made of what?

1413 found on HONO 300 S.R.E.-
ELEKTRON $25 \mathrm{~N}^{\circ} 670$, indicated VP;
1525 found on B NORMA GRAFIA 190, indicated DIN A4. For comparisons between paper formats. Where does this value come from?
1639 found on many models. What is the meaning of the indication Pud found on A.W.FABER "CASTELL" DISPONENT 1/22/322.
1667 found on ARISTO AVIAT G Nr.616, indicated m/s. Why metre/second?
1762 found on ARISTO AVIAT G Nr.616, indicated lb. What is the relation with the pound?
1853 found on A.W.FABER "CASTELL" 378, indicated A. Being an electro modell, I doubt this gauge has anything to do with the nautical mile.
1906 found on B NORMA GRAFIA 190, indicated DIN A1. For comparisons between paper formats. Where does this value come from?
19519.5° found on P.I.C. RULE SLIDE R.A. V.F. 0129 10", indicated F on the S scale.
2205 found on NESTLER $\mathrm{N}^{\circ} 40$, indicated by an incomprehensible abbreviation looking like e u.
266 found on B NORMA GRAFIA 190, indicated \mathbf{p}.
2805 found on NESTLER Nr. 0374 System MOISSON, indicated L.
2825 found on HONO 300 S.R.E.ELEKTRON $25 \mathrm{~N}^{\circ} 670$, indicated VPP;
305 found on B NORMA GRAFIA 190, indicated DIN A5. For comparisons between paper formats. What is the decimal value?
332 found on A.G. THORNTON P I.C. $\mathrm{N}^{\circ} 131$, indicated \mathbf{W}.
353 found on HONO 300 S.R.E.ELEKTRON $25 \mathrm{~N}^{\circ} 670$, indicated VE';
3568 found, amongst others, on A.W.FABER-CASTELL 111/48

System Dr. Winkel, indicated by a square. Why a square?

357 found on TAVERNIER-GRAVET 13 bis REGLE BEGHIN, indicated pf.
376 37.6 found on P.I.C. RULE SLIDE R.A. V.F. 0129 10", indicated Y on the S scale.
3812 found on B NORMA GRAFIA 190, indicated DIN A2. For comparisons between paper formats. Where does this value come from?
3835 found on A.W.FABER-CASTELL 111/48 System Dr. Winkel, indicated by an hexagon.
4025 found on A.W.FABER-CASTELL 111/48 System Dr. Winkel, indicated by a circle.
414 found on A.W.FABER "CASTELL" 1/22 DISPONENT für den Kaufmann.
5475 found on B NORMA GRAFIA 190, indicated DIN C6. For comparisons between paper formats. What is the decimal value?
5535 found on A.G. THORNTON P I.C. $\mathrm{N}^{\circ} 131$, indicated \mathbf{R}.
554 found on B NORMA GRAFIA 190, indicated Konk.
611 found on B NORMA GRAFIA 190, indicated DIN A6. For comparisons between paper formats. Where does this value come from?
6854 found on TAVERNIER-GRAVET 13 bis REGLE BEGHIN, indicated \mathbf{c} \mathbf{m}. Calculate the weight of a cylinder made of what?
7075 found on HONO 300 S.R.E.ELEKTRON $25 \mathrm{~N}^{\circ} 670$, indicated VE'".
714 found on A.W.FABER "CASTELL" 378, indicated N.
759 found on JEPPESEN MODEL CR5, indicated FUEL LBS.
7624 found on B NORMA GRAFIA 190, indicated DIN A3. For comparisons between paper formats. Where does this value come from?
788 found on A.W.FABER "CASTELL" 398, indicated K.
844 found on TAVERNIER-GRAVET 43 R 7-21, indicated KW. Clearly for kilowatt / horsepower
conversions but what is the rational behind it?
found on P.I.C. RULE SLIDE R.A. V.F. 0129 10".
found on TAVERNIER-GRAVET 13 bis REGLE BEGHIN, indicated \mathbf{c} br. Calculate the weight of a cylinder made of what?
9 found on HONO 300 S.R.E.ELEKTRON $25 \mathrm{~N}^{\circ} 670$, indicated VM.
found on B NORMA GRAFIA 190, indicated DIN A0. For comparisons between paper formats. Where does this value come from?
found on JEPPESEN MODEL CR5, indicated OIL LBS.

and more help

As stated before, I have found many other marks on the slide rules from Herman's CD. If any of the members have information, instruction leaflets or manuals for following items, please let me know. If the editors are willing to accept a second article on such a boring subject \odot, I may complete the list and write an addendum for one of the next MIRs.

Maker, model, (match number).

- Alro Militaire Rekenschijf (0049)
- Alro Philips Telecommunication (0056)
- Alro Radio NR 04-2220 (0089)
- American Blueprint Military Slide Rule (0096)
- Aristo Schul-Commerz Nr. 0905 (0292)
- Aston \& Mander Mk. VI (0477)
- B R L A Artillery MK. 3 (0522)
- B•R•L R52 Janus Series (0525)
- B•R•LF0129 (0527)
- Dalton Aviation ComputerMark 1 (0565)
- Marcantoni $\mathrm{N}^{\circ} 25 \mathrm{R}$ (0592)
- Cook London (0638)
- Diwa Re-Inforced Concrete $\mathrm{N}^{\circ} 221$ (0757)
- EMT (0829)
- Faber-Castell Demegraph 111/66 (1138)
- Felsenthal Mark VIII-C (1200)
- G. Felsenthal \& Sons Computer Type D-4A (1202)
- Goble Aircraft Specialities Airlines Computer Model D (1271)
- Graphoplex 697(1329)
- Keuffel \& Esser GP12 (1513)
- Koch, Huxold \& Hannemann
- Wasserversorgung u. Entwässerung (1551)
- Loga Doppel-Rechenschieber (1587)
- Loga 30 RZh (1594)
- Loga 30 sT (1595)
- Loga Topo $6400 \mathrm{~A}^{0} / 00$ (1601)
- Logomat Devis-o-Mat Nr 4206 (1665)
- Albert Nestler No. 26 (1853)
- Nestler International Nr. 0127 (1915)
- Nestler System Dr. Schäfer 0432 (1915)
- Norma Gambrinus 100 (2087)
- Pickett U.S. Military Slide Rule (2146)
- Reed Service Electronic Engineers (2232)
- Reiss (2243)
- Roberts (2281)
- Roberts (2282)
- SanTech Mark VIII-C Computer Model FDW-31 (2327)
- Sterling Pocket Metric Converter (2389)
- Stutchbury Makers (2394)
- Sun Hemmi NO. 257 (2468)
- Calcolator (2503)
- P.IC 141 (2546)
- Warner B-1 Computer cw-2 (2646)
- Mk1B for 6B/404 (2665)
- A.W.FABER. 377 (2725)
- Tecnostyl (2776)
- Telex Anglo-Met-Converter Model MET-56 (2792)

Acknowledgements

I would like to thank Simon van der Salm for having me invited to write this article in the MIR. I hope it will be of some interest for fellow collectors. 2 October 2001

- Faber-Castell Scheisstechnik 67/56b (2793)
- Richardson Slide Rule Model of 1917 (2819)
- BRLE E.13c (2870)
- A.W.FABER. 374 (2894)
- BHL PG54-2 (2908)
- Blundell 808 Accountants (2909)
- BHL Artillery 10" Mils MK. 2 (2914)
- Blundell Harling Super Duplex A504 (2962)
- A.W.Faber-Castell 57/74 System Schirdewann (3030)
- The Supreme (3074)
- Airtour Computer CRP 9 (3090)
- Alro Radio 04-2220 (3411)
- Mercator Calculateur d'estime type 100 (3513)
- Norma Gambrinus 190 (3515)
- Keuffel \& Esser Military Slide Rule (3671)

